• Users Online: 99
  • Print this page
  • Email this page
Year : 2022  |  Volume : 12  |  Issue : 4  |  Page : 326-333

A scoring framework and apparatus for epilepsy seizure detection using a wearable belt

1 Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, Zarqa, Jordan
2 Department of Mechatronics Engineering, Faculty of Engineering, The Hashemite University, Zarqa, Jordan

Correspondence Address:
Salah Eldeen Mofleh Falah Alzghoul
Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, Zarqa
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jmss.jmss_138_21

Rights and Permissions

To develop a wearable device that can detect epilepsy seizures. In particular, due to their prevalence, attention is focused on detecting the generalized tonic-clonic seizure (GTCS) type. When a seizure is detected, an alert phone call is initiated and an alarm SMS sent to the nearest health-care provider (and/or a predesignated family member), including the patient's location as global positioning system (GPS) coordinates. A wearable belt is developed including an Arduino processor that constantly acquires data from four different sensing modalities and monitors the acquired signal patterns for abnormalities. The sensors are a heart rate sensor, electromyography sensor, blood oxygen level (oxygen saturation) sensor, and an accelerometer to detect sudden falls. Higher-than-normal threshold levels are established for each sensor's signal. If two or more signal measurements exceed the corresponding threshold value for a predetermined time interval, then the seizure alarm is triggered. Clinical trials were not pursued in this study as this is the initial phase of system development (phase 0). Instead, the instrumented belt seizure detection prototype was tested on nine healthy individuals mimicking, to some degree, seizure symptoms. A total of eighteen trials took place of which half had <2 sensor thresholds exceeded and no alarm, whereas the other half resulted in activating the alarm when two or more sensor thresholds were exceeded for at least the predetermined time interval corresponding to each of the higher-than-normal sensor readings. For each trial that triggered the alarm when a seizure was detected, the on-board GPS and global system for mobile communication (GSM) units successfully initiated an alert phone call to a predesignated number in addition to sending an SMS message, including GPS location coordinates. Continuous real-time monitoring of signals from the four different sensors allows the developed wearable belt to detect GTCS while reducing false alarms. The proposed device produces an important alarm that may save a patient's life.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded43    
    Comments [Add]    

Recommend this journal